- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Andreescu, Daniel (1)
-
Andreescu, Silvana (1)
-
Babu, S. V. (1)
-
Gowda, Akshay (1)
-
Hassan, Mohamed H (1)
-
Othman, Ali (1)
-
Seo, Jihoon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, structural and surface defects. This review details advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two-oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level, facilitate formation of oxygen vacancies and defect states which confer extremely high reactivity and oxygen buffering capacity, and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights the key properties of CeNPs, their synthesis, interactions and reaction pathways, and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.more » « less
An official website of the United States government
